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Properties and features of asymmetric partial devil’s staircases deduced
from piecewise linear maps
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A piecewise linear map with one discontinuity is used to link together iterated map properties with the shape
of the ensuing staircases. In the main part of the paper, a three-segment map is treated, with a horizontal middle
segment next to the discontinuity and the development of partial and asymmetric staircases is demonstrated. In
particular, a possible hierarchy of partiality, connected with the ratio of the length of the horizontal segment to
the discontinuity jump, is obtained. The map is used for constructing staircases that imitate various experi-
mental and numerical staircases that appear in the literature for excitable systems.
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I. INTRODUCTION eters, while for another parameter range gaps appeared
between the various10"} plateaus. These gaps were domi-
In many periodically driven oscillating systems plotting nated by{10"(10"~ )™} sequences. Faet al.[9], studying a
the winding numbei(or firing rate r against some control model for the concentration of calcium ions in nonexitable
parameter(like the period and the amplitude of the drive cells, obtained a staircase dominated{b9"} plateaus up to
yields acomplete devil's staircasdn this plot, there exist aboutn=7, and between ever§10"} and{10" !} plateau
plateaus at the levels of all rational valuesraf[0,1]. The  pairs they found a sequence £f10") (10" 1)™ plateaus.
length of these plateaus decreases with the denominator of(Forn=4, a small{(10°) (10°10")™} sequence appeared be-
in its reduced forn(see, e.g., Ref.1]). tween the{10°} and the{10°10%} plateaus as we)l.Soen
However, there exist systems, usually excitable, that exet al. [10] obtained{1"0} and{100(10}'} phase locking in
hibit one-sided highly asymmetric staircases, either partial onumerical solutions for the Morris-Lecar model. Coombes
complete. Takahashet al. [2] found, for a periodically and Osbaldestifill] studied the McKean model for two
stimulated giant squid axon, periods that were only of thecases by constructing analytically a return map, which could
types{1"0} and{100(10}'} (1 represents a forcing stimulus be investigated. In one case the staircase consisted of only
that triggers a pulse in the forced system, and O represents{aQ"} plateaus. In the second case the obtained staircase re-
stimulus that fails to do 90Thus, in this measurement only sembled those in Ref9], and had also chaotic regions. Ost-
plateaus withr =n/(n+1) andr=m/(2m+1) (m=n+1) born et al. [12] studied models for the sinus node, and in
were obtained in the devil’s staircase. For a different range oparticular a simplified model that treats the sinus node as a
parameters, aperiodic responses that made the staircase n@me-element system. The staircase obtained resembled the
monotonic have also been detected. In R&f. the same ones in[9,11].
group found an additiona{10°(10?)"} sequence. Dolnik For discrete maps, complete devil's staircases were ob-
et al. [4] studied models of an excitable chemical systemtained in maps that are monotonically increasing, except at
under a periodical pulse stimulation. For some of those modene discontinuity point where they “jump” down, thus cre-
els they obtained a complete devil's staircase, but for otheating a two-branched mapne branch denoted by “0” while
models a one-sided partial staircase was obtained. It wase other by “1”). This includes the sine circle mgg3]
shown that when a positively sloped part of a return map wasvhere the mod 1 operation creates the discontinuity. Piece-
artificially replaced by a horizontal segment, a completewise linear maps, consisting of two linear segments, one at
staircase turned into a one-sided staircase, and vice versgach side of the discontinuity, were studied by Nagumo and
Sato and co-workerf5,6] obtained numerically the results Sato[14] for segments of equal slopes and by Yoshizawa
similar to those of Takahasleit al. for an excitable Bonho- et al.[15] for segments with different positive slopes. When
effer Van der Pol system periodically forced by a train of one of the segments in such a piecewise linear map is not
pulses. In addition, for another range of parameters, thepositively sloped, the staircase is no longer complete. Avrutin
obtained a staircase ¢10"} periods, with zones of bistabil- and Schanf16] studied such a map where one segment was
ity. Yasin et al. [7] studied the sinusoidally driven excitable horizontal, and obtained a staircase containing dil§0}
Bonhoeffer Van der Pol system. A staircase with mostlyplateaus. Rinzel and Trdy7] and LoFard 18] studied maps
{170}, and{(10") (10" Y™ (for few values ofn=2) pla-  with one segment that was negatively sloped. The staircases
teaus was obtained. Huaeg al. [8], measuring an optogal- there containf1"0} plateaus with bistability zones between
vanic circuit, found g 10"} staircase for one range of param- each two neighboring plateaus.
The studies of maps with two linear segments mark the
road that gives the connection between the general shape of a
*Email address: eman@bgumail.bgu.ac.il discrete map and the type of staircase that is thereby ob-
"Email address: avinoam@bgumail.bgu.ac.il tained. However, they fall short of explaining results like
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those in Refs[2,3,9,10 where a much reacher variety of its transient beginning. There is a possibility of bistability,
one-sided partial staircases can be found. As we presentlye., where two different winding numbers are obtained for
show, this variety is intersting in itself and in addition showsthe same value o, for different initial values.
a systematic order. The aim of the present work is to find a The conditiond f/dx<1 assures that fa<0 there exists
piecewise linear model that exhibits such staircases, and tonly a single fixed point, which is located dr,; for a
study the general features of these maps. >1, again only a single fixed point exists, but here it is
In Sec. Il, several general properties of the systems unddocated orR;; and for 0<a<1 no fixed points exist. When-
study and some basic definitions are given. In Sec. lll aver a fixed point exists, it is stable sinf@éf/dx|<1 for
geometrical approach is applied to the two-segment piecezveryx+0. Thus, fora<O0 there exists a basin of attraction,
wise linear map emphasizing the role of the different parts obuch that every orbit that starts in it converges to the fixed
the map. This analysis also helps us to choose the parametgssint, and sao =0, at least for some initial values. By similar
for the three-segment piecewise liner map discussed in Segeasonings, fom>1 there must be initial values for which
IV. It is demonstrated that for some parameters, this map=1. Thus in order to obtain a devil's staircase, the range of
yields staircases that resemble the experimental and numeg-should include the rangid,1], and in cases of bistability
cal results cited above. Finally, in Sec. V this comparison igsee below also values in its vicinity.
discussed.

IIl. ATWO-SEGMENT MAP
Il. GENERAL PROPERTIES OF THE MODELS

. A. The map
All models we use are iterated maps of the form

Since we are interested in asymmetric devil’s staircases,
Xn+1=F(Xn;@)=0(x,) +a, (1)  we cannot use the symmetric Nagumo-Sato mé#ié]. The
simplest possible model is the one in whieh andR; con-
whereg(x) is a function ofx with one discontinuity at which sist of only one linear segment each, but the two have dif-

the value of the function drops, ards a control parameter. ferent slopes. That is, we consider an iterated mgap;
|df/dx|<1 for all x, except at the discontinuity. We choose =f(x,) with

the discontinuity to be at=0 with a jump of—1, thus

) ¢ fo(X):b0X+ a, x<0
Xlln(;]if(X):a, (X)_ fl(X)=b1X+a— 1, X?O, (6)
lim f(x)=f(0)=a—1, 2 where|b;|<1. We first discuss the case where bbthand
x0" b, are positive, and then the cases where loigeither O or

) _ ) _negative. For each case we are interested in finding the bor-
as in Ref.[14]. All calculations are conducted for piecewise gers a,, from the left anda, from the right, of the{1"0}
linear maps. The main features are, however, valid for more L R

general maps having similar shapes. plateaus, and,, anda,_ of the {10"} plateaus. We also try
The discontinuity divides the graph of the map into two to find what other plateaus can be found in the gapsen
regions: exisp between those plateaus.
Ro=(=,0), B. The {1"0} and {10"} plateaus
R;=[0,+). () Let us examine in detail the conditions for the appearance
of an exclusivg 1"0} period in the two-segment model, with
For each orbit{x;}={X1,Xs, ... X,}, @ binary sequence 0<by<b;.
{J3i}=1{31,3,, ... J,} can be assigned, where We begin by defining the twerossing intervalson Ry:
The crossing-out intervaD and the crossing-in onk (Fig.
0, xeRo 1). These are the only intervals & which are involved in
Ji= 1, xeR;. @ the crossing betweeR; and Ry. O is defined to be the

interval that, when an orbit visits it, another iteration brings
With this sequence theinding number rcan be calculated itto Ry, i.e.,
for a specific value of. It is the number of 1's in théJ;}

sequence divided by the sequence length, i.e., O:={x|x=0,f(x)<0}. (7

n HenceO=[0O, ,0g), where
> 3,
Li=1
r=Ilim

n—oo

5 0O.=0,

In actual calculations, though is finite. Here we usen OR:fil(O)ZE' (8)
=300. The orbif{x;} is started at an arbitrary point, beyond b
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1

QXA

FIG. 1. The interval©=[0O, ,Og) and!l=[I,lg) (thickened
of the map[Eq. (6)] with a=0.83, by=0.5, andb,;=0.7. For this
casef?(1)CO; therefore all orbits acquire £1°0} period after a
short transient.

Before defining the segmehtlet us find for what values
of a a passage frorR; to Ry must be followed by an imme-
diate return toR,, that is, for what values o& an orbit
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For this rangewhich always includes=3), there can be
neither two consecutive 1's nor two consecutive 0's. There-
fore, Eq.(15) defines the minimal range of tH40} plateau
in the staircase. It can be shown that such a plateau also
exists for the more general case, where the map is not piece-
wise linear but still obeys the conditions of Sec. II.

Now we can define foa>bqy/(1+bg) the intervall as
the interval onR, to which orbits can return frorR,. Since,
according to Eq(11), for such values o& an orbit can visit
Ry only once,

I=f2(0), (16)
and the end points of this interval are
IL=2(0p)="fo(f1(0))=(bg+1)a—hy,
Ir=F*(0Op)=fo(0)=a. 17

We can now calculate the values afor which the sys-
tem has an exclusivgl"0} period, regardless of the initial
conditions, forn>1. A {1"0} period means that after going
from Ry to R; (into intervall), the orbit visitsR; for n—1
additional times before going back Ry. A sufficient condi-
tion is

1741 co. (18)

Figure 1 gives an example for such a case=@). Because

(beyond the transientannot have two consecutive 0's? For f1(X) is a monotonous functiorff(1,)<f%(Ig). Therefore

this it is required that for everye O,

F2(x)=fo(f1(x))>0. 9

Eq. (18) implies

O <fi HI)<f " (Ir)<Og. (19

Sincefy(f1(x)) is monotonic, the condition is fulfilled when While the calculations below are conducted specifically for

fo(f1(0))>0, (10)
or
bo
>1+ by’ (11

In a similar way, the condition for no two consecutive 1's is

f1(f5(0))<0; (12)
thus,
! 13
“T+b; (13
Since if 0<bg, b;<1, it is always true that
o1 14
T+b, 1+b;’ (149

the two conditiong(11) and (13) overlap. The range of the

overlap is

bo 1
< .
1+by O 1+Db,

(15

the map of Eq(6), the condition stated by E¢19) is valid
for the general case of Sec. Il.
Since

f17Y(x)=b,f1"2(x)+a—1="--.

n-2

20 bil)(a— 1)
n 1

1bl

=b] " x+

=b'l"1x+ (a—1), (20)

we have

1bn

l_bnfl
n 1 _ 1

1-b,

(21)

and
1-bf+bgb] " *(1-b,)
1_b1 a

1-b} t+bgb] H(1-b,)
B 1-b, '

7)) =

(22

From Eq.(21) and the conditiorf]~*(1g)<Og, we have
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1-p"
1-b,°

1-b}™' 1-a
1-b, by’

(23

and from Eq.(22) andO, <f77%(1,), we get

1-bl+bgb] H(1-by)  1-Db] *+beb] }(1-by)
1-b; a- 1-b, :

(24)
Thus, a sufficient condition for the appearance of an exclu
sive {1"0} period[i.e., a winding number=n/(n+1)] is

n

1-b] +bob " H(1-b,)
< .
1_b2+l

1-b+bgb] *(1-b,)

(29

We shall denote those expressionaeﬁ§ and aﬁ;R. We prove
below thata; =a, andaj =an..
In a similar way, or just by replacingy«—b; anda«<1

—a, the condition for an exclusivgéld"} period[r=1/(n
+1)]is

bo(1—bo)

1_b8+1

bg~*(1—by)
1-bj+b.bi H(1—by)

(26)

C. The gaps between thg1"0} plateaus
It can be seen from Eq25) that for everyn, a{n_l)R
<ap <ap <ag - For ae(ay,.af ), there is no
value ofn for which Eq.(18) is satisfied, and the staircase

might contain plateaus for periods more complicated tharshrinks; and the poirDg crosse L _ _
d hus, for small values od, O e f"*1(0,); for intermediate

{1"0}. This range must exist because the transition from th
situation wheref ! ~*(1) C O to the situation wheré] (1) is
completely outside® andf’(1)C O instead, is gradual. Dur-
ing the transition, the poinDg divides the intervafg’l(l)
into two parts, of which only the left one is in the inten@l
The other part of} (1) is the one that after another itera-
tion falls into O.

We thus define two subintervals D (see Fig. 2 for the
n=3 case:

Op:=f""Y1)NO=[f""(1),0r),
On+1:=f(1)NO=[O,f"(Ir)). (27)

Forae (aﬁ;R ,aZ‘nH)L), whenever an orbit passes through the
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0.8}

-

+
c
-

0 L

0.8

FIG. 2. The segment®,=[0, ,f3(Ir)) andO3=[f?(I,),0R)
(thickened for a=0.838,by=0.8, andb;=0.8. Orbits that leave
R; throughO, passR; four times before leaving it, while those that
leave throughO; pass it three timesOg divides f2(1) into two
parts. To its left liesO3, and to its right a part that after another
iteration become®,.

simultaneous processels*"1(0,. ;) [which lies on the left
side of f""1(1)] expands(with the expansion of, ; it-
self); f"*1(0,) [which lies on the right side of" 1(1)]
$" (1) from right to left.

values ofa, Or moves betweefi"*(0,) andf"* (0. ,);
and for yet higher values af, Oy resides inf"*1(0,, ).

When Og, lies betweenf"*1(0,) and f""1(0,.,) (see
Fig. 3 for then=2 casg,

f1*4(0n41)C O,

f"*2(0n) COp 1. (28)
Thus, in this case, every {1'0) subperiod must be fol-
lowed by a (I'0) subperiod and vice versa, and the period-
icity must be{(1"*10)(1"0)}.

ForOgre f"*1(0,), there is a part o®,, which is mapped
back into O, (Fig. 4). In this case it is possible to have
several consecutive (') subperiods. This allows periods

interval O (after the first passageit must be through either |je {(1"0)™(1"*10)} and even more complicated ones like
O, or O, 1. When it does so throug®,,, it contributes a {[(1"0)™(1"*10)][(1"0)™*1(1"*10)]'} [as long as they do
(1"0) subperiod to the period, and when it passes througiot contain two consecutive {110) subperiods However,
Oy+1, it contributes a (17%0) subperiod. It is evident that there is always a limit to the number of consecutivéQ(L
asalis increased frona;_to ag,, 1) . On+1 €xpands, while  subperiods in this parameter range. For the piecewise linear
O,, shrinks. system, this can be seen by calculating the lehgtof the

In order to see how the subintervaB,,, and O, are  subsegment
mapped back into themselves, it is useful to see how they are
mapped into the interval" %(1)(=f"*1(0)) that is com-
posed ofO, to the left of pointOg, andfl_l(OnH) to its
right. Asais increased fron::u’,§R to aZ‘nH)L , we can see three

of:=f"*1(Of HNO,,
0%=0. (29)
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0.41

n+1
n+1

01}

<< - —
< -4

k]
e

R
. . . . . . . . . -0.3 &o)b .
0 0.2 0.4 ‘ ‘ ‘ ‘ ‘ ) . . .
% 0 « 0.2 0.4
FIG. 3. (8) The segment®; and O, (thickened for a=0.762 "
andb,=b;=0.8. Since for this cast’(03) CO, andf*(0,) COs, FIG. 4. (a) Fora=0.748, and other parameters being the same
there exists &(1°0)(1%0)} period. (b) Enlargement of the map as in Fig. 3, a part of4(O,) is in O, but another part falls out of
around segmerf. O altogether. The part aD, for which f* falls outsideO is that for
which f3 falls back intoO,. This allows several consecutive’(l)
Now, from Fig. 4, subperiods to appear between ever?(I)lone.(b) Enlargement of

the map around segme@x

q"(1+lp—qlg)—p
Im:qlmfl_p:

, (30)  (1"0)™max subperiod must be followed by a {1'0) subpe-
1-q riod. An important corollary is that foa> aﬁR, there can be
no {1"0} period, hence
whereq=bgb, andp is the length of the subsegment
= aﬁR. (32
") —onf" (1) =[0g,f" Ylg)]. (3D
In a similar way, forOge f"*1(0,. ), only consecutive
It is easy to see from Ed30) that for every value o for (1"**0) subperiods are allowed, and their number also has a
which Oge f"*1(0,), there is a final numbem,,,(a) final limit dependent or, so we also have

(which increases asHa:R from above, so that aftem;, .
consecutive visits in subsegmefy,, lmmax+1<0’ ie., a 8n ~an, - (33
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1
1+ 1+ 1
7

45} [ 1 45} o= 1

i , . 34t , .

2/t . 1 2/t a0 1

351 o120 ] 351 ~ ]
—_ 10 { — 10 :
St _ . St _ .
= 10410 10%(10)? = ;

2/5F A . 2/5F R ]

13} . 10 1 13} LA 1

= 3.
1/41 & 4 1/4F 19- i
1/5+ -~ . 1/5+ - .
0
0 . o—2 .
0 1 0 1
a a
FIG. 5. Using Eq.(6) with by=b, (0.55 in this caseyields a FIG. 6. Equation(6) with by=0.3 andb;=0.8 yields a com-

complete symmetric devil's staircase. This is exactly the Nagumogplete, but asymmetric, devil's staircase.
Sato model.
The gradual change of the staircase withcan be seen in
For a genera(not piecewise lineamap, Eqs(32) and(33)  the upper part of Fig. 11.
can still be proved by using the same method using

E. Left segment with a negative slope

n+1
gq= ma>< g) (34 Consider the case whelg<0, while b;>0 (Ry with a
negative slope—studied by Rinzel and Tidy’] and by Lo-
Faro[18]).
D. Horizontal left segment Here too, no consecutive 0’'s are possible é0r0, be-

Now we can discuss the effect of changimgand reduc- cause then, for ak<O0,
ing it to 0. Forby= Db, there is a complete symmetric devil’s _
staircase(Fig. 5), as can be seen from Eq®5) and (26). fo(x)=box+a>a>0. (35

This is the Nagumo-Sato model described in R&#] (note Thus. there are né10™ periods. or not even (9 subperi-
that the slope in Ref.14] is denoted by 1). od: Withn=1. bL0} periods, ven (1P subperi

Decreasind, has several effects on the shape of the stair- HereO, andOx (see Fig. 8 are again given by Eq8).

case. Its left side is usually affected by the “channel” be-,qever for thel interval, we have here the inverted rela-
tween the diagonal an&,. Decreasingb, opens up this tion [see Eq(17)];

channel. Thus, for a specific value af an orbit leavesR,

after fewer visits there. This situation results in the expansion I.=f2(0g)="fo(0)=a,

of the {10} plateau towards the left, and the shrinkage of all

other plateaus with<3. Forby,=0 anda>0, there cannot . . . . .

be two consecutive 0’s at all. Thus, fbp=0, all plateaus 1k 1

between{0} and{10} completely disappear. This result can J
be seen from Eq(26), since forb,=0 one getsa, =a, =
L R 4/5+ 13— b
=0 for everyn. 3/4r . T 1
The effect of decreasinlgy on the right side of the stair- 2/3r —0 1

case is less dramatic. Ag, decreased, shrinks whileO is .
left unchanged. SincE' (1) shrinks too, it is more difficult LAY
to haveOg e "~ (1), and the gap between thi2"0} and the
{1"*10} plateaus shrinks. Fob,=0, | becomes a point.
Therefore there is no range & values for whichOg

e f"1(1). Thus all gaps discussed above with all compli-
cated plateaus between them disappear, and we are left wit
the{1"0} plateaus. This result can also be deduced from Eq. o2 |
(29), since forby=0, a, =a¢+1) for everyn.

Figure 6 depicts a complete asymmetric devil's staircase 0 a !
obtained for B<by<b,<1. Figure 7 depicts the partial stair-
case that is obtained fdy,=0 (as discussed in Ref16]). FIG. 7. Partial devil’s staircase fdr,=0 andb,=0.8.
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n+1

0.1 0.3 0.5

n
FIG. 8. (a) The segment®; and O, (thickened for a=0.71,
bo=—0.8, ando,=0.8. Since for the case showit(O3) C 05 and
3(0,)C0O,, the map with these parameters can have either
{130} or a{120} period, according to the initial conditiofb) En-
largement of the map around segmeént

lr=f2(Op) =fo(f1(0))=(bo+1)a—by. (36)

Equation(19) is still the condition for an exclusivé1"0}
period, but with the expressions fog andl, of Eq. (36), it
yields

1-bt
1—b"

anL

. 1-bl+bebj(1-by)
a, = .
" 1-b]* 1+ bebl(1—b,)

(37

PHYSICAL REVIEW E 67, 016202 (2003

Note that the expressions af; and aj_ of Eq. (37) are
identical to the expressions af, 1 anda,, , 1 respectively,

obtained for theby>0 case.

Let us consider tha values of the gap between exclusive
{1"0} and {1"*!0} periods @r.<a<ap,;). As for the
case where both’s are positive, the gap is characterized by

Ogre f" (1. (39)
0, andO,,, ; are defined as in E¢27). We again look at the
interval f"~(1). Here too,f"(1)=f"*1(0), but the order
of points onO is revered. As in the positive, case, the
following three processes occur simultaneously wiaeis
increased: the length df'*1(0,, ) increases; the length of
f1*1(0,) decreases; and the poidk crosses" (1) from
right to left. But heref"*1(0,.,) is on the right side of
f771(1), while f"*1(0,)) is on its left. The crossing of
f"~1(1) by Og, the growth off"*1(0,,, ), and the shrink-
age of f"*1(0,) are all linear ina, but the fastest is the
movement ofOg [which should cros$" (l) unlike the
borders off"*1(0, ;) andf"*1(0,)]. HenceOx, is always
betweenf"*1(0,) andf"*1(0,.,). Thus, for all values of
a in the gap,

f*4(0,)C O,

f1*2(0n41)COns1, (39

and this gap idistable The number line is divided into two
basins of attraction, one of tHe"*10} period, and one of
the {1"0} period. Each of these basins is not simply con-
nected. The former includes subsegm@nt , (in particular,
the point 0", which is easy to be used as an initial value in
simulationg; the latter include®,, (and the point 0).

We thus see that

— A% * — * — Aa%*
an =an i <an i =an <ap =an:1 <an.=aniy
(40)

Wherea, anda,_ are still given by Eq(25).

We have seen above that farx0 there is a stable fixed
point onRy. However, its basin of attraction does not nec-
essarily include the whol& axis. Consider an intervaC
=[C_,Cg] on Ry (Fig. 9), around the stable fixed point,
defined by

C:={x|x<0;f(x)<0}. (41)
The borders ofC are
C=t5 0=,
0
Cr=0 (42)
Because
f(CL)=0=Cg (43)
and
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FIG. 9. Demonstration of a coexistence of a stable fixed point

and a{10} period: IntervalC is a part of the basin of attraction of
the fixed point. IntervaD = (f(0*),C,) is a part of the basin of the
{10} period.(The rest of thex axis is also divided between those
two basins of attractiona=—1.2, by=—0.7, andb,=0.8.

f(Cr)=a>C, (44
and sincef is monotonic there, once an orbit is @it stays
there, converging into the fixed point.

PHYSICAL REVIEW E 67, 016202 (2003

4/5r
3/4r

2/3F —_— ]

—1/2r ; - - .

FIG. 10. Partial devil's staircase fop=—0.3 andb;=0.8. The
borders of the bistable zones are marked by dotted lines.

bo

>
a7 1¥b,

(50

(recall that botha andb,, are negative So we see that also
the expressions of the right border of tf@& plateau and of
the left border of th¢ 10} plateau stay unchanged as the sign
of by is flipped.

An example of a bistable partial staircase is given in Fig.
10, while the gradual growth of the bistability zones wlith

In order to see whether the basin of attraction of the fixedS depicted in the lower part of Fig. 11.

point includes the whole axis or not(coexistence with a
{10} period, consider the pointf(0*)=a—1. If f(0")
e C, then all orbits going over frorR; to Ry enterR, to the
right of f(0"), and are thus ifC. For such values o, the
basin of attraction of the stable fixed point is ¢,>). If,
however,f(0") falls to the left ofC, thenf?(0™) is in R,
again, and it can be showsee Fig. 9 that

f(0M)<f30")<cC,. (45)
Thus, for the interval defined as
D=(f(0"),Cy), (46)
f2(D)CD. (47
Now since
DNC=J=f(D)CR;, (48

every orbit that passes throughmust have 10} period.
We can see now that the condition for coexistenc€0df
and{10} periods is

a
—=C,_,

f(0MH)=a—1<——= (49
bo

or

IV. ATHREE-SEGMENT MAP

In the preceding section, we have seen that the simple
map usedEg. (6)] enables either a complete staircase or a
staircase with only{1"0} plateaus. Yet, it did demonstrate
the link between a horizontal segment of the map and the
partiality of the staircase. We now want to go one step fur-

1

o of

-1

a

FIG. 11. The change of the staircase wlit§y b,;=0.7.
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' ' ' ' ' ' ' Consider, then, the cask<1. For 0<a<3 (the left part

of staircasg the diagonal is neaR,, therefore we should
look closely atR,.

Let us define forR, the intervalsO andT, in a manner
similar to the definitions of0 and | for R; (Fig. 12. O
=[O, ,0g) where

~ 4 a
O =fy (0)=—d——,
P bo
Or=0, (52)
andT=[T,,Tg) where
T =f(0)=a-1,
-1k . . . . . s Tszl(foB(O)):a(bﬁ 1)—-1. (53
-1 0
X, The existence of a horizontal segm@atﬁ in the edge of
FIG. 12. A three_segment map with a horizonta| Segmenafor RO eXC|UdeS the pOSS|b|I|ty Of an InflnlteSIma”y narrow Chan'
=0.105, by=0.8, b;=0.8, andd=0.15. O=[0,,0r) andT  Nel betweerR, and the diagonal which, as in a tangent bi-

furcation, would allow an unlimited number of consecutive
0’s between each crossover wiy.
In order to find the maximal number of consecutive 0’s

. . . . that an orbit can have for a certain valuedyfwe consider
ther, and to obtain a more complicated partial staircase. th'he map fora=0". For this value of (just above the bifur-

i n n
example, the one with botfi"0} and{(10) 10_2} SEQUENCES - tion in which the stable fixed point dRy, disappears the
of plateaus, as was reported by Takahashi and co-workers . _ ~
[2,3] and Soeret al.[10]. For this purpose, we try a map in channel betweeR, and the dlagonal|s the narrowest, dnd
which only part ofR, is horizontal. ThusR, contains two is furthest to the left. Foa=0", I =Ig=—1, and therefore
linear segments. The segment next to the discontinuity igll the paths of the orbiR, must be identical to each other.
horizontal, and the other has a positive sl¢p@. 12. For-  Hence, ata=0 the jump in the staircase is frof®} to a

=[T,,Tg) are thickened. For the case shopfi(1)CO], it there-
fore has a10°%} period.

mally, the iterated map function is {10"} plateau(with a value ofn yet to be foungl A necessary
condition for the existence of 810"} period is that then
fo (X) =bex+bed+a, XeSo —1 iteration ofl | (=Tg) would be still onR,, i.e.,
fx)=1 fo,(0) =a, xeSy, (51 fo_ {(—1;2=0)<0. (54)
fi(x) =byx+a-—1, Xe Sy,

Substituting Eq(54) in Eq. (51) shows that 10"} period
appears in the staircase for

where
q _pn-2 —bo
So,=(—,—d), So,=[-d0), S=[0+), d<dn=bo “— - (55
@ B 1 bo
and 0<bg, b;<1. (The cased,=1 was discussed aboye.

We obviously have here a combination of the two previ- What plateaus other thefl0"} can appear in the stair-
ous behaviorga R, with a positive slope, and a horizontal case, for a certain value af? As for the two-segment map,

Ro). There are two extreme cases: tbr-0, Sy disappears e define subinterval®, ; and®, (Fig. 13 for values ofa
and the staircase must be complete; dor-0, Sy disap-  for which O, e f"~2(T) (i.e., which correspond to the gap

pears, and the staircase contains oflj0} plateaus. The petween thdé10"} and the{10"~ 1} plateaus Note that thed

smallest value ok that an orbit can+ have after V|S|t|r@1 is interval consists of the Who|§05 Segment and a part of the
f1(0)=a—1. Thus, ford>1, f(0 )ESOB (for 0<a<1, S, one, and that for

which is the significant range d), so Soa is completely

excluded from the dynamics, and the ensuing staircase is b%”_zbl(l—bo)
identical with the one that is obtained from a map with a — — (56)
totally horizontalR,. (1+bg “by)(1-=bp)
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U U G

0 0.8

X
L n
-0.8 0
X FIG. 14. The segmentsO;=[0,,f?(lg)) and O,
=[f(1,),0R)) (thickened for a=0.753, b,=0.8, b;=0.8, andd
FIG. 13. The segment®, and O, (thickened for a=0.182  =0.1. O, is mapped into one point after a visit Ry,.
by=0.8, b;=0.8, andd=0.1. Note that her®; is mapped into 71 ) )
one point. f17*(1g) =Og. Sincelg, Og, andf,(x) are all independent
of d, so isanR. However,l =f2(0") does depend od:
for which
I =f2(0")=f(a—1)
n-1,7 .2 _
(0L sa, ) >—d (57) fo (a=1) =bga—1+d)+a, —d=a—1

~ Tl fo(a-1) —a= - -
is satisfied, the whol®,, subinterval(that is always found OB( ) a=lr, d<a-1.

on the right side ofO) lies on the horizonta$,, segment. (58

Thus, after passing throud,, the orbit returns &y atlr  The left end of the{1"* 10} plateaua,, 1) , is the value of
(Fig. 13 forn=3) regardless of the point at which it entered P PR -

~ ) a for which f7~7(1_)=Og. Therefore

O,. Thus every (10 subperiod must be followed by a
(1007 h one[othervwse, every (19 subpgnod must be fol- —d<a, — 1=l =lg=ay =anm.1),, (59)
lowed by another identical (1D subperiod, which would

bring us back to thg10"} period. O,_;, however, must that is, there is a jump from thl"0} plateau directly to the

have at least a part on tt& segment. This allows succes- {1"*10} one. By substituting the expressionayf, from Eq.

sive visits inO,,_, which are different from each other, and (25) into Eq. (59), we obtain

for which the last visit returns t®,,. Thus, there is no limi-

tation on successive (10') subperiods. Hence, fai<d, d :bnl__bl_ (60)

there can begand it turns out that there)isa sequence of " ll—le

{(10M) (10" Hy™ (m=1, ... =) plateaus in the gap between

{10" and{10" 1}. For values ofd satisfying Eq.(56), this ~ Thus ford>d,, there is no gap between tj2"0} and the

sequence fills the whole of this gap. Only valuesidfiat are  {1""!0} plateaus. Ford<d,, there exist values o& for

very small(compared tai,) violate Eq.(56). For these val- Which the subinterval®, andO,. , can be defined in th®

ues other periods begin to appear in this gap. interval. Sincef(O,) is on the right side of (O) (Fig. 14,
Let us now investigate how the right part of the devil's its image might lie entierly in the horizontal part of the map,

staircase changes with In order to do so we again look at !-€-

the segment® and| on R, for 3<a<1 (the right side of

the staircase The expressions foO, =0, Or="f;*(0) f(On)C Sy, (62)

=(1-a)/b; andlg=f(0")=a, which are given by Eq<8) " L

and (17) for the two-segment map stay unchanged, and aré nNecessary condition for this situation is

all independent ofl. As we have seen above, the right end of _—

each {1"0} plateau, a, , is the value ofa for which fa(li;an)>—d, (62)
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0 3n+1 2n+1

FIG. 16. The primary(full line), secondarylong-dashey and
two tertiary (short-dashedbranches of the Farey tree according to
the order that is induced by the changedah Eq. (51).

FIG. 15. The change of the staircase withthe length of the
horizontal segmenﬁoﬂ); by=b;=0.7.
which is satisfied for {(10)(107£0)"} sequence that appears between{tt@ and
the{101%0} plateaus. It starts to appear whigi©,) expands
into the S, segment(for values ofa corresponding to the
gap between th¢10} and the{1%0} plateaus As d—O0,
more and more periods are added until evidently a complete

bob?"(1—by)
(1-b]"H(1+bgb})

(63

For those values odl, the subintervalD, maps to the point
Ir, and later intof"(1g) that is inO, ;. Thus(in the gap
every (1"0) subperiod must be followed by aT1'0) one,
and there can be no period containing two consecuti?é) 1

devil’s staircase is achieved fdr=0"".

Generally speaking, the more complicated the partial
staircase is, the narrower is the range dofvalues which
yields it.

subperiods. On the other harfd©,,, 1) is on the left side of
f(O), therefore at least a part of it must lie$y , and there

is no limit to consecutive (1'10) subperiods. Hence, for
d<d,, there can béand actually there exista sequence of
{(1"0)(1""10)™ (m=1,... =) plateaus in the gap be-
tween the{1"0} and{1"*10} plateaus. When in addition Eq.
(63) is satisfied, this sequence fills the entire gap.

Figure 15 sums up the changes of the staircasedyidmd

V. DISCUSSION

Asymmetric partial devil’s staircases have appeared spo-
radically in the literature for more than a decade. In some of
the cases they are explicitly identified, while for others the
partiality of the staircase is not mentioned. But there has
been no theoretical framework for partial devil's staircases,
s - ; . like the one existing for the complete ones. There does not
reveals a hierarchy of partiality. Fat>1 the staircase is o en exist a “standard” map, playing the role that the sine
constant, and contains only the"0} plateaus. This range of j;cje map fulfills for the complete staircase.

d values is the widest, which puts this staircase in the top of |, this paper, for the first timéas far as we knoy such a
the partiality _hlerqrchy. The first change occursdat 1, standard is suggestd&q. (51)]. The properties of the map
where a gap is being opened between {@p and the{10;  \yere linked to the shape of the ensuing staircase. It has been
plateaus. This gap is filled with(10%)(10)"} plateaus. The shown that in this typga map with a discontinuily the
range ofd values here is also relatively large. A further de- long-term dynamics is determined only by the region around
crease ind add a{(10%)(10°)"} sequence of plate?us be- the discontinuity. Whenever this region is monotonically in-
tween the{0} and the{1C?} plateaus, and &(10)(1°0)"}  creasingexcept at the discontinuity itsglfthe ensuing stair-
sequence between t}i&0} and the{1°0} ones. The order of case is a complete one; and a horizontal negatively
appearance of these two sequences depends on the ratio bgsped segment next to the discontinuity yields a partial
tweenb, andb;. Equations(55) and (60) show that forby  staircase.

=b,, d;=d;, and those sequences appears together. How- The link is not just qualitative, but semiquantitative. The
ever, forby,>b, the {(10°)(107)"} sequence appears first, essential feature of the map, which is responsible for the
while for b;>by it is the {(10)(120)"} sequence that is the partiality of the staircase, is the ratio between the length of
first to emerge. the horizontal(or almost horizontalsegment and the height

With a further decrease ofd, there appear the of the discontinuity jump. This ratio is well defined for the
{(10M) (10" Hy™  and {(1"0)(1"*10)™ sequences for piecewise linear map used hdm in Eq. (51)]. The defini-
n>1, which have been discussed above. Other sequencéen is of course less accurate for more realistic maps, but is
not previously discussed appear as well. The first one is atill important.
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1t 1 1t —
4/5+ 3,— . 4/5¢ C
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L 10210 — < 10°019) ] 2/5) , —10%10 .
10
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> ;
10 1/4F i i
1/5} — 1
0 0 | 0_0 i
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FIG. 17. Staircase with botfL"0} and{(120)(10)"} sequences FlG. 18.~Sta|rcase foby=0.7, b;=0.2, andd=0.05. Since
of plateaus for the three-segment map wdth 0.42. Other param- d,<dy<d<dg<dj, there is a{(10°)(10")"} sequence on the left
eters are as in Fig. 15. side of the staircase, whereas on the right side the only sequence
other than thg1"0} is a small{(120)™10} sequence.

The use of this ratio induces a hierarchy in the emergingvas obtained by Takahaskt al. in Ref.[2], where in addi-
branches of the Farey tree. It can be seen from Flg 16 thqton to the{1n0} sequence of p|ateaus there also appears a
all the sequences of plateaus that appear in the devil’s Stait[(10)”102} sequence. In order to imitate this staircase with
Cr?se of Eq(51) aﬁdrils delcreasecri], COTLGSEI)_%nd to bran(t:)hes % he map of Eq.(51), a suitable value ofi can always be
F e Farey tree which incline to the right. The primary branc hosen: mafg,d1)<d<ag (as can be seen in Fig. L7A
is then/(n+1) br%nch(for th’?{{"‘)} sequence 1°f plateaus staircase, where in addition to these plateaus there appears
It grows from thez .Ieaf and is “pulled” by theinleaf. The also a{(10%)"10°} sequence like in Ref[3], can also be
secondary branch is the/(2n+1) (for the {(10)"10%} pla-  ;piained. As we can see from E@S5) and(60) and Fig. 15,
teaus. It grows from the first leaf in the primary branch)( in order to avoid the appearance of an additicifa?0)"10}
and is pulled by the second leaf). There are two tertiary ~sequenceb; should be smaller thaby, i.e., R (in its non-
branches. The/(3n+1) (for the {(10?)"10°} plateaugthat ~ horizontal segmeitshould be steeper tha®y. In some pa-
grows from the first leaf of the secondary branch, and th@*ers[9,7,11 there exist partial staircases that contain many
(2n+1)/(3n+2) (for the {(120)"10} plateaus that grows ~ {(10")(10" )™  sequences, and relatively —narrow
from the second leaf of the primary branch. There are fouf(10)(1°0)"} plateaus. This kind of staircase can be
quarternary branches growing in a similar way, and so forthachieved(Fig. 18 with bo>b,, which is needed in order to
For bo=b, in Eq. (51), both tertiary branches appear to- obtaind,>d; for a relatively high value of. This result is
gether whend is reduced, followed by all the quaternary consistent with maps obtained for excitable modélks 19,
branches, etc. But fdo,>b,, the whole tree “leans” more where the slope dRy is almost 1, except for a small segment
to the ¥ side, i.e., the left branches in each level of thenear the discontinuity wher®, curls downwards, andR,
hierarchy appear first. Left branches from a lower level maymonotonically, but moderately, increases.
sometimes appear even before right branches from an upper The piecewise linear map is obviously only a caricature of
level in the hierarchy. real maps, for whichRy curls down near the discontinuity,

This hierarchy enables a successful “imitation” by the but it does explain the partiality phenomenon quite well. It
piecewise linear map of staircases that appear both in expeffails, however, to recapture finer details like “period dou-
ments and in numerical calculations of ordinary differentialbling” and chaos(the later, sincédf/dx|<1). This is prob-
equations. The simplest staircase, other than the trivial onesbly why we have not obtained any “noisy” nonmonotonic
that contain only{1"0} (or {10"} when the horizontal seg- staircase, like those found in several papf2s3,11,12.
ment is to the right of the discontinuityis of the type that These are the subject matter for future publications.
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