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Properties and features of asymmetric partial devil’s staircases deduced
from piecewise linear maps

E. Yellin* and A. Rabinovitch†

Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
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A piecewise linear map with one discontinuity is used to link together iterated map properties with the shape
of the ensuing staircases. In the main part of the paper, a three-segment map is treated, with a horizontal middle
segment next to the discontinuity and the development of partial and asymmetric staircases is demonstrated. In
particular, a possible hierarchy of partiality, connected with the ratio of the length of the horizontal segment to
the discontinuity jump, is obtained. The map is used for constructing staircases that imitate various experi-
mental and numerical staircases that appear in the literature for excitable systems.
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I. INTRODUCTION

In many periodically driven oscillating systems plottin
the winding number~or firing rate! r against some contro
parameter~like the period and the amplitude of the driv!
yields a complete devil’s staircase. In this plot, there exist
plateaus at the levels of all rational values ofr P@0,1#. The
length of these plateaus decreases with the denominatorr
in its reduced form~see, e.g., Ref.@1#!.

However, there exist systems, usually excitable, that
hibit one-sided highly asymmetric staircases, either partia
complete. Takahashiet al. @2# found, for a periodically
stimulated giant squid axon, periods that were only of
types$1n0% and$100(10)n% ~1 represents a forcing stimulu
that triggers a pulse in the forced system, and 0 represe
stimulus that fails to do so!. Thus, in this measurement on
plateaus withr 5n/(n11) and r 5m/(2m11) (m5n11)
were obtained in the devil’s staircase. For a different rang
parameters, aperiodic responses that made the staircase
monotonic have also been detected. In Ref.@3# the same
group found an additional$103(102)n% sequence. Dolnik
et al. @4# studied models of an excitable chemical syst
under a periodical pulse stimulation. For some of those m
els they obtained a complete devil’s staircase, but for ot
models a one-sided partial staircase was obtained. It
shown that when a positively sloped part of a return map w
artificially replaced by a horizontal segment, a compl
staircase turned into a one-sided staircase, and vice v
Sato and co-workers@5,6# obtained numerically the result
similar to those of Takahashiet al. for an excitable Bonho-
effer Van der Pol system periodically forced by a train
pulses. In addition, for another range of parameters, t
obtained a staircase of$10n% periods, with zones of bistabil
ity. Yasin et al. @7# studied the sinusoidally driven excitab
Bonhoeffer Van der Pol system. A staircase with mos
$1n0%, and $(10n)(10n21)m% ~for few values ofn>2) pla-
teaus was obtained. Huanget al. @8#, measuring an optogal
vanic circuit, found a$10n% staircase for one range of param
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eters, while for another parameter range gaps appe
between the various$10n% plateaus. These gaps were dom
nated by$10n(10n21)m% sequences. Fanet al. @9#, studying a
model for the concentration of calcium ions in nonexitab
cells, obtained a staircase dominated by$10n% plateaus up to
aboutn57, and between every$10n% and $10n21% plateau
pairs they found a sequence of$(10n)(10n21)m% plateaus.
~For n54, a small$(105)(105104)m% sequence appeared b
tween the$105% and the$105104% plateaus as well.! Soen
et al. @10# obtained$1n0% and $100(10)n% phase locking in
numerical solutions for the Morris-Lecar model. Coomb
and Osbaldestin@11# studied the McKean model for two
cases by constructing analytically a return map, which co
be investigated. In one case the staircase consisted of
$10n% plateaus. In the second case the obtained staircas
sembled those in Ref.@9#, and had also chaotic regions. Os
born et al. @12# studied models for the sinus node, and
particular a simplified model that treats the sinus node a
two-element system. The staircase obtained resembled
ones in@9,11#.

For discrete maps, complete devil’s staircases were
tained in maps that are monotonically increasing, excep
one discontinuity point where they ‘‘jump’’ down, thus cre
ating a two-branched map~one branch denoted by ‘‘0’’ while
the other by ‘‘1’’!. This includes the sine circle map@13#
where the mod 1 operation creates the discontinuity. Pie
wise linear maps, consisting of two linear segments, one
each side of the discontinuity, were studied by Nagumo a
Sato @14# for segments of equal slopes and by Yoshiza
et al. @15# for segments with different positive slopes. Whe
one of the segments in such a piecewise linear map is
positively sloped, the staircase is no longer complete. Avru
and Schanz@16# studied such a map where one segment w
horizontal, and obtained a staircase containing only$1n0%
plateaus. Rinzel and Troy@17# and LoFaro@18# studied maps
with one segment that was negatively sloped. The stairca
there contain$1n0% plateaus with bistability zones betwee
each two neighboring plateaus.

The studies of maps with two linear segments mark
road that gives the connection between the general shape
discrete map and the type of staircase that is thereby
tained. However, they fall short of explaining results lik
©2003 The American Physical Society02-1
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those in Refs.@2,3,9,10# where a much reacher variety o
one-sided partial staircases can be found. As we prese
show, this variety is intersting in itself and in addition show
a systematic order. The aim of the present work is to fin
piecewise linear model that exhibits such staircases, an
study the general features of these maps.

In Sec. II, several general properties of the systems un
study and some basic definitions are given. In Sec. II
geometrical approach is applied to the two-segment pie
wise linear map emphasizing the role of the different parts
the map. This analysis also helps us to choose the param
for the three-segment piecewise liner map discussed in
IV. It is demonstrated that for some parameters, this m
yields staircases that resemble the experimental and num
cal results cited above. Finally, in Sec. V this comparison
discussed.

II. GENERAL PROPERTIES OF THE MODELS

All models we use are iterated maps of the form

xn115 f ~xn ;a!5g~xn!1a, ~1!

whereg(x) is a function ofx with one discontinuity at which
the value of the function drops, anda is a control parameter
ud f /dxu,1 for all x, except at the discontinuity. We choos
the discontinuity to be atx50 with a jump of21, thus

lim
x→02

f ~x!5a,

lim
x→01

f ~x!5 f ~0!5a21, ~2!

as in Ref.@14#. All calculations are conducted for piecewis
linear maps. The main features are, however, valid for m
general maps having similar shapes.

The discontinuity divides the graph of the map into tw
regions:

R05~2`,0!,

R15@0,1`!. ~3!

For each orbit$xi%5$x1 ,x2 , . . . ,xn%, a binary sequence
$Ji%5$J1 ,J2 , . . . ,Jn% can be assigned, where

Ji5H 0, xiPR0

1, xiPR1 .
~4!

With this sequence thewinding number rcan be calculated
for a specific value ofa. It is the number of 1’s in the$Ji%
sequence divided by the sequence length, i.e.,

r 5 lim
n→`

(
i 51

n

Ji

n
. ~5!

In actual calculations, though,n is finite. Here we usen
5300. The orbit$xi% is started at an arbitrary point, beyon
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its transient beginning. There is a possibility of bistabili
i.e., where two different winding numbers are obtained
the same value ofa, for different initial values.

The conditiond f /dx,1 assures that fora,0 there exists
only a single fixed point, which is located onR0; for a
.1, again only a single fixed point exists, but here it
located onR1; and for 0,a,1 no fixed points exist. When
ever a fixed point exists, it is stable sinceud f /dxu,1 for
everyxÞ0. Thus, fora,0 there exists a basin of attraction
such that every orbit that starts in it converges to the fix
point, and sor 50, at least for some initial values. By simila
reasonings, fora.1 there must be initial values for whic
r 51. Thus in order to obtain a devil’s staircase, the range
a should include the range@0,1#, and in cases of bistability
~see below! also values in its vicinity.

III. A TWO-SEGMENT MAP

A. The map

Since we are interested in asymmetric devil’s staircas
we cannot use the symmetric Nagumo-Sato model@14#. The
simplest possible model is the one in whichR0 andR1 con-
sist of only one linear segment each, but the two have
ferent slopes. That is, we consider an iterated mapxn11
5 f (xn) with

f ~x!5H f 0~x!5b0x1a, x,0

f 1~x!5b1x1a21, x>0,
~6!

whereubi u,1. We first discuss the case where bothb0 and
b1 are positive, and then the cases where oneb is either 0 or
negative. For each case we are interested in finding the
ders,anL

from the left andanR
from the right, of the$1n0%

plateaus, andãnL
and ãnR

of the $10n% plateaus. We also try
to find what other plateaus can be found in the gaps~when
exist! between those plateaus.

B. The ˆ1n0‰ and ˆ10n
‰ plateaus

Let us examine in detail the conditions for the appeara
of an exclusive$1n0% period in the two-segment model, wit
0,b0,b1.

We begin by defining the twocrossing intervalson R1:
The crossing-out intervalO and the crossing-in oneI ~Fig.
1!. These are the only intervals onR1 which are involved in
the crossing betweenR1 and R0 . O is defined to be the
interval that, when an orbit visits it, another iteration brin
it to R0, i.e.,

O:5$xux>0,f ~x!,0%. ~7!

HenceO5@OL ,OR), where

OL50,

OR5 f 1
21~0!5

12a

b1
. ~8!
2-2
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Before defining the segmentI, let us find for what values
of a a passage fromR1 to R0 must be followed by an imme
diate return toR1, that is, for what values ofa an orbit
~beyond the transient! cannot have two consecutive 0’s? F
this it is required that for everyxPO,

f 2~x!5 f 0„f 1~x!….0. ~9!

Sincef 0„f 1(x)… is monotonic, the condition is fulfilled when

f 0„f 1~0!….0, ~10!

or

a.
b0

11b0
. ~11!

In a similar way, the condition for no two consecutive 1’s

f 1„f 0~0!…,0; ~12!

thus,

a,
1

11b1
. ~13!

Since if 0,b0 , b1,1, it is always true that

b0

11b0
,

1

11b1
, ~14!

the two conditions~11! and ~13! overlap. The range of the
overlap is

b0

11b0
,a,

1

11b1
. ~15!

FIG. 1. The intervalsO5@OL ,OR) and I 5@ I L ,I R) ~thickened!
of the map@Eq. ~6!# with a50.83, b050.5, andb150.7. For this
casef 2(I ),O; therefore all orbits acquire a$130% period after a
short transient.
01620
For this range~which always includesa5 1
2 ), there can be

neither two consecutive 1’s nor two consecutive 0’s. The
fore, Eq.~15! defines the minimal range of the$10% plateau
in the staircase. It can be shown that such a plateau
exists for the more general case, where the map is not pi
wise linear but still obeys the conditions of Sec. II.

Now we can define fora.b0 /(11b0) the intervalI as
the interval onR1 to which orbits can return fromR0. Since,
according to Eq.~11!, for such values ofa an orbit can visit
R0 only once,

I 5 f 2~O!, ~16!

and the end points of this interval are

I L5 f 2~OL!5 f 0„f 1~0!…5~b011!a2b0 ,

I R5 f 2~OR!5 f 0~0!5a. ~17!

We can now calculate the values ofa for which the sys-
tem has an exclusive$1n0% period, regardless of the initia
conditions, forn.1. A $1n0% period means that after goin
from R0 to R1 ~into interval I ), the orbit visitsR1 for n21
additional times before going back toR0. A sufficient condi-
tion is

f 1
n21~ I !,O. ~18!

Figure 1 gives an example for such a case (n53). Because
f 1(x) is a monotonous function,f 1

k(I L), f 1
k(I R). Therefore

Eq. ~18! implies

OL, f 1
n21~ I L!, f 1

n21~ I R!,OR . ~19!

While the calculations below are conducted specifically
the map of Eq.~6!, the condition stated by Eq.~19! is valid
for the general case of Sec. II.

Since

f 1
n21~x!5b1f 1

n22~x!1a215•••

5b1
n21x1S (

i 50

n22

b1
i D ~a21!

5b1
n21x1

12b1
n21

12b1
~a21!, ~20!

we have

f 1
n21~ I R!5

12b1
n

12b1
a2

12b1
n21

12b1
~21!

and

f 1
n21~ I L!5

12b1
n1b0b1

n21~12b1!

12b1
a

2
12b1

n211b0b1
n21~12b1!

12b1
. ~22!

From Eq.~21! and the conditionf 1
n21(I R),OR , we have
2-3
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12b1
n

12b1
a2

12b1
n21

12b1
,

12a

b1
, ~23!

and from Eq.~22! andOL, f 1
n21(I L), we get

0,
12b1

n1b0b1
n21~12b1!

12b1
a2

12b1
n211b0b1

n21~12b1!

12b1
.

~24!

Thus, a sufficient condition for the appearance of an exc
sive $1n0% period @i.e., a winding numberr 5n/(n11)] is

12b1
n211b0b1

n21~12b1!

12b1
n1b0b1

n21~12b1!
,a,

12b1
n

12b1
n11

. ~25!

We shall denote those expression asanL
* andanR

* . We prove

below thatanL
* 5anL

andanR
* 5anR

.

In a similar way, or just by replacingb0↔b1 and a↔1
2a, the condition for an exclusive$10n% period @r 51/(n
11)# is

b0
n~12b0!

12b0
n11

,a,
b0

n21~12b0!

12b0
n1b1b0

n21~12b0!
. ~26!

C. The gaps between thê1n0‰ plateaus

It can be seen from Eq.~25! that for everyn, a(n21)R
*

,anL
* ,anR

* ,a(n11)L
* . For aP(anR

* ,a(n11)L
* ), there is no

value of n for which Eq. ~18! is satisfied, and the staircas
might contain plateaus for periods more complicated th
$1n0%. This range must exist because the transition from
situation wheref 1

n21(I ),O to the situation wheref 1
n21(I ) is

completely outsideO and f 1
n(I ),O instead, is gradual. Dur

ing the transition, the pointOR divides the intervalf 1
n21(I )

into two parts, of which only the left one is in the intervalO.
The other part off 1

n21(I ) is the one that after another itera
tion falls into O.

We thus define two subintervals inO ~see Fig. 2 for the
n53 case!:

Onª f n21~ I !ùO5@ f n21~ I L!,OR!,

On11ª f n~ I !ùO5@OL , f n~ I R!!. ~27!

For aP(anR
* ,a(n11)L

* ), whenever an orbit passes through t

interval O ~after the first passage!, it must be through eithe
On or On11. When it does so throughOn , it contributes a
(1n0) subperiod to the period, and when it passes thro
On11, it contributes a (1n110) subperiod. It is evident tha
asa is increased fromanR

* to a(n11)L
* , On11 expands, while

On shrinks.
In order to see how the subintervalsOn11 and On are

mapped back into themselves, it is useful to see how they
mapped into the intervalf n21(I )„5 f n11(O)… that is com-
posed ofOn to the left of pointOR , and f 1

21(On11) to its
right. Asa is increased fromanR

* to a(n11)L
* , we can see three
01620
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e

h
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simultaneous processes:f n11(On11) @which lies on the left
side of f n21(I )] expands~with the expansion ofOn11 it-
self!; f n11(On) @which lies on the right side off n21(I )]
shrinks; and the pointOR crossesf n21(I ) from right to left.
Thus, for small values ofa, ORP f n11(On); for intermediate
values ofa, OR moves betweenf n11(On) and f n11(On11);
and for yet higher values ofa, OR resides inf n11(On11).

When OR lies betweenf n11(On) and f n11(On11) ~see
Fig. 3 for then52 case!,

f n11~On11!,On ,

f n12~On!,On11 . ~28!

Thus, in this case, every (1n110) subperiod must be fol-
lowed by a (1n0) subperiod and vice versa, and the perio
icity must be$(1n110)(1n0)%.

For ORP f n11(On), there is a part ofOn which is mapped
back into On ~Fig. 4!. In this case it is possible to hav
several consecutive (1n0) subperiods. This allows period
like $(1n0)m(1n110)% and even more complicated ones lik
$@(1n0)m(1n110)#@(1n0)m11(1n110)# l% @as long as they do
not contain two consecutive (1n110) subperiods#. However,
there is always a limit to the number of consecutive (1n0)
subperiods in this parameter range. For the piecewise lin
system, this can be seen by calculating the lengthl m of the
subsegment

On
m
ª f n11~On

m21!ùOn ,

On
05O. ~29!

FIG. 2. The segmentsO45@OL , f 3(I R)) andO35@ f 2(I L),OR)
~thickened! for a50.838, b050.8, andb150.8. Orbits that leave
R1 throughO4 passR1 four times before leaving it, while those tha
leave throughO3 pass it three times.OR divides f 2(I ) into two
parts. To its left liesO3, and to its right a part that after anothe
iteration becomesO4.
2-4
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Now, from Fig. 4,

l m5qlm212p5
qm~11 l 02ql0!2p

12q
, ~30!

whereq5b0b1
n , andp is the length of the subsegment

f n21~ I !2Où f n21~ I !5@OR , f n21~ I R!#. ~31!

It is easy to see from Eq.~30! that for every value ofa for
which ORP f n11(On), there is a final numbermmax(a)
~which increases asa→anR

* from above!, so that aftermmax

consecutive visits in subsegmentOn , l mmax11,0, i.e., a

FIG. 3. ~a! The segmentsO3 andO2 ~thickened! for a50.762
andb05b150.8. Since for this casef 3(O3),O2 and f 4(O2),O3,
there exists a$(130)(120)% period. ~b! Enlargement of the map
around segmentO.
01620
(1n0)mmax subperiod must be followed by a (1n110) subpe-
riod. An important corollary is that fora.anR

* , there can be

no $1n0% period, hence

anR
5anR

* . ~32!

In a similar way, forORP f n11(On11), only consecutive
(1n110) subperiods are allowed, and their number also ha
final limit dependent ona, so we also have

anL
5anL

* . ~33!

FIG. 4. ~a! For a50.748, and other parameters being the sa
as in Fig. 3, a part off 4(O2) is in O3, but another part falls out of
O altogether. The part ofO2 for which f 4 falls outsideO is that for
which f 3 falls back intoO2. This allows several consecutive (120)
subperiods to appear between every (130) one.~b! Enlargement of
the map around segmentO.
2-5
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For a general~not piecewise linear! map, Eqs.~32! and~33!
can still be proved by using the same method using

q5FmaxS d f

dxD G
n11

. ~34!

D. Horizontal left segment

Now we can discuss the effect of changingb0 and reduc-
ing it to 0. Forb05b1, there is a complete symmetric devil
staircase~Fig. 5!, as can be seen from Eqs.~25! and ~26!.
This is the Nagumo-Sato model described in Ref.@14# ~note
that the slope in Ref.@14# is denoted by 1/b).

Decreasingb0 has several effects on the shape of the st
case. Its left side is usually affected by the ‘‘channel’’ b
tween the diagonal andR0. Decreasingb0 opens up this
channel. Thus, for a specific value ofa, an orbit leavesR0
after fewer visits there. This situation results in the expans
of the $10% plateau towards the left, and the shrinkage of
other plateaus withr , 1

2 . For b050 anda.0, there cannot
be two consecutive 0’s at all. Thus, forb050, all plateaus
between$0% and $10% completely disappear. This result ca
be seen from Eq.~26!, since forb050 one getsãnL

5ãnR

50 for everyn.
The effect of decreasingb0 on the right side of the stair

case is less dramatic. Asb0 decreases,I shrinks whileO is
left unchanged. Sincef n21(I ) shrinks too, it is more difficult
to haveORP f n21(I ), and the gap between the$1n0% and the
$1n110% plateaus shrinks. Forb050, I becomes a point
Therefore there is no range ofa values for which OR
P f n21(I ). Thus all gaps discussed above with all comp
cated plateaus between them disappear, and we are left
the $1n0% plateaus. This result can also be deduced from
~25!, since forb050, anR

5a(n11)L
for everyn.

Figure 6 depicts a complete asymmetric devil’s stairc
obtained for 0,b0,b1,1. Figure 7 depicts the partial stai
case that is obtained forb050 ~as discussed in Ref.@16#!.

FIG. 5. Using Eq.~6! with b05b1 ~0.55 in this case! yields a
complete symmetric devil’s staircase. This is exactly the Nagum
Sato model.
01620
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The gradual change of the staircase withb0 can be seen in
the upper part of Fig. 11.

E. Left segment with a negative slope

Consider the case whereb0,0, while b1.0 (R0 with a
negative slope—studied by Rinzel and Troy@17# and by Lo-
Faro @18#!.

Here too, no consecutive 0’s are possible fora.0, be-
cause then, for allx,0,

f 0~x!5b0x1a.a.0. ~35!

Thus, there are no$10n% periods, or not even (10n) subperi-
ods, withn.1.

HereOL andOR ~see Fig. 8! are again given by Eq.~8!.
However, for theI interval, we have here the inverted rel
tion @see Eq.~17!#:

I L5 f 2~OR!5 f 0~0!5a,

-
FIG. 6. Equation~6! with b050.3 andb150.8 yields a com-

plete, but asymmetric, devil’s staircase.

FIG. 7. Partial devil’s staircase forb050 andb150.8.
2-6
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I R5 f 2~OL!5 f 0„f 1~0!…5~b011!a2b0 . ~36!

Equation~19! is still the condition for an exclusive$1n0%
period, but with the expressions forI R and I L of Eq. ~36!, it
yields

anL
* 5

12b1
n21

12b1
n

,

anR
* 5

12b1
n1b0b1

n~12b1!

12b1
n111b0b1

n~12b1!
. ~37!

FIG. 8. ~a! The segmentsO3 and O2 ~thickened! for a50.71,
b0520.8, andb150.8. Since for the case shown,f 4(O3),O3 and
f 3(O2),O2, the map with these parameters can have eithe
$130% or a $120% period, according to the initial condition.~b! En-
largement of the map around segmentO.
01620
Note that the expressions ofanL
* and anR

* of Eq. ~37! are

identical to the expressions ofan21R
andan11L

, respectively,

obtained for theb0.0 case.
Let us consider thea values of the gap between exclusiv

$1n0% and $1n110% periods (anR
* ,a,an11L

* ). As for the

case where bothb’s are positive, the gap is characterized

ORP f n21~ I !. ~38!

On andOn11 are defined as in Eq.~27!. We again look at the
interval f n21(I ). Here too,f n21(I )5 f n11(O), but the order
of points onO is revered. As in the positiveb0 case, the
following three processes occur simultaneously whena is
increased: the length off n11(On11) increases; the length o
f n11(On) decreases; and the pointOR crossesf n21(I ) from
right to left. But heref n11(On11) is on the right side of
f n21(I ), while f n11(On) is on its left. The crossing of
f n21(I ) by OR , the growth off n11(On11), and the shrink-
age of f n11(On) are all linear ina, but the fastest is the
movement ofOR @which should crossf n21(I ) unlike the
borders off n11(On11) and f n11(On)]. HenceOR is always
betweenf n11(On) and f n11(On11). Thus, for all values of
a in the gap,

f n11~On!,On ,

f n12~On11!,On11 , ~39!

and this gap isbistable. The number line is divided into two
basins of attraction, one of the$1n110% period, and one of
the $1n0% period. Each of these basins is not simply co
nected. The former includes subsegmentOn11 ~in particular,
the point 01, which is easy to be used as an initial value
simulations!; the latter includesOn ~and the point 02).

We thus see that

anL
5an21R

* ,an21R
* 5anL

,anR
* 5an11L

,anR
5an11L

* ,

~40!

whereanL
andanR

are still given by Eq.~25!.

We have seen above that fora,0 there is a stable fixed
point on R0. However, its basin of attraction does not ne
essarily include the wholex axis. Consider an intervalC
5@CL ,CR# on R0 ~Fig. 9!, around the stable fixed poin
defined by

Cª$xux,0; f ~x!,0%. ~41!

The borders ofC are

CL5 f 0
21~0!52

a

b0
,

CR50. ~42!

Because

f ~CL!505CR ~43!

and

a

2-7
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f ~CR!5a.CL , ~44!

and sincef is monotonic there, once an orbit is inC it stays
there, converging into the fixed point.

In order to see whether the basin of attraction of the fix
point includes the wholex axis or not~coexistence with a
$10% period!, consider the pointf (01)5a21. If f (01)
PC, then all orbits going over fromR1 to R0 enterR0 to the
right of f (01), and are thus inC. For such values ofa, the
basin of attraction of the stable fixed point is (2`,`). If,
however,f (01) falls to the left ofC, then f 2(01) is in R1
again, and it can be shown~see Fig. 9! that

f ~01!, f 3~01!,CL . ~45!

Thus, for the interval defined as

D5„f ~01!,CL…, ~46!

f 2~D !,D. ~47!

Now since

DùC5B⇒ f ~D !,R1 , ~48!

every orbit that passes throughD must have a$10% period.
We can see now that the condition for coexistence of$0%

and$10% periods is

f ~01!5a21,2
a

b0
5CL , ~49!

or

FIG. 9. Demonstration of a coexistence of a stable fixed po
and a$10% period: IntervalC is a part of the basin of attraction o
the fixed point. IntervalD5„f (01),CL… is a part of the basin of the
$10% period. ~The rest of thex axis is also divided between thos
two basins of attraction.! a521.2, b0520.7, andb150.8.
01620
d

a.
b0

11b0
~50!

~recall that botha andb0 are negative!. So we see that also
the expressions of the right border of the$0% plateau and of
the left border of the$10% plateau stay unchanged as the si
of b0 is flipped.

An example of a bistable partial staircase is given in F
10, while the gradual growth of the bistability zones withb0
is depicted in the lower part of Fig. 11.

IV. A THREE-SEGMENT MAP

In the preceding section, we have seen that the sim
map used@Eq. ~6!# enables either a complete staircase o
staircase with only$1n0% plateaus. Yet, it did demonstrat
the link between a horizontal segment of the map and
partiality of the staircase. We now want to go one step f

t

FIG. 10. Partial devil’s staircase forb0520.3 andb150.8. The
borders of the bistable zones are marked by dotted lines.

FIG. 11. The change of the staircase withb0 ; b150.7.
2-8
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ther, and to obtain a more complicated partial staircase.
example, the one with both$1n0% and$(10)n102% sequences
of plateaus, as was reported by Takahashi and co-wor
@2,3# and Soenet al. @10#. For this purpose, we try a map i
which only part ofR0 is horizontal. ThusR0 contains two
linear segments. The segment next to the discontinuit
horizontal, and the other has a positive slope~Fig. 12!. For-
mally, the iterated map function is

f ~x!5H f 0a
~x! 5b0x1b0d1a, xPS0a

f 0b
~x! 5a, xPS0b

f 1~x! 5b1x1a21, xPS1 ,

~51!

where

S0a
5~2`,2d!, S0b

5@2d,0!, S15@0,1`!,

and 0,b0 , b1,1.
We obviously have here a combination of the two pre

ous behaviors~a R0 with a positive slope, and a horizonta
R0). There are two extreme cases: ford→0, S0b

disappears

and the staircase must be complete; ford→`, S0a
disap-

pears, and the staircase contains only$1n0% plateaus. The
smallest value ofx that an orbit can have after visitingR1 is
f 1(0)5a21. Thus, for d.1, f (01)PS0b

~for 0,a,1,

which is the significant range ofa), so S0a
is completely

excluded from the dynamics, and the ensuing staircas
identical with the one that is obtained from a map with
totally horizontalR0.

FIG. 12. A three-segment map with a horizontal segment foa

50.105, b050.8, b150.8, and d50.15. Õ5@ÕL ,ÕR) and Ĩ

5@ Ĩ L , Ĩ R) are thickened. For the case shown@ f 2( Ĩ ),Õ#, it there-
fore has a$103% period.
01620
or

rs

is

-

is

Consider, then, the cased,1. For 0,a, 1
2 ~the left part

of staircase!, the diagonal is nearR0, therefore we should
look closely atR0.

Let us define forR0 the intervalsÕ and Ĩ , in a manner
similar to the definitions ofO and I for R1 ~Fig. 12!. Õ

5@ÕL ,ÕR) where

ÕL5 f 0a

21~0!52d2
a

b0
,

ÕR50, ~52!

and Ĩ 5@ Ĩ L , Ĩ R) where

Ĩ L5 f 1~0!5a21,

Ĩ R5 f 1„f 0b
~0!…5a~b111!21. ~53!

The existence of a horizontal segmentS0b
in the edge of

R0 excludes the possibility of an infinitesimally narrow cha
nel betweenR0 and the diagonal which, as in a tangent b
furcation, would allow an unlimited number of consecuti
0’s between each crossover withR1.

In order to find the maximal number of consecutive 0
that an orbit can have for a certain value ofd, we consider
the map fora501. For this value ofa ~just above the bifur-
cation in which the stable fixed point onR0 disappears!, the
channel betweenR0 and the diagonal is the narrowest, andĨ L

is furthest to the left. Fora501, Ĩ L5 Ĩ R521, and therefore
all the paths of the orbitR0 must be identical to each othe
Hence, ata50 the jump in the staircase is from$0% to a
$10n% plateau~with a value ofn yet to be found!. A necessary
condition for the existence of a$10n% period is that then
21 iteration of Ĩ L (5 Ĩ R) would be still onR0, i.e.,

f 0a

n21~21;a50!,0. ~54!

Substituting Eq.~54! in Eq. ~51! shows that a$10n% period
appears in the staircase for

d,d̃n5b0
n22 12b0

12b0
n21

. ~55!

~The cased̃251 was discussed above.!
What plateaus other then$10n% can appear in the stair

case, for a certain value ofd? As for the two-segment map
we define subintervalsÕn21 andÕn ~Fig. 13! for values ofa
for which ÕLP f n22( Ĩ ) ~i.e., which correspond to the ga
between the$10n% and the$10n21% plateaus!. Note that theÕ
interval consists of the wholeS0b

segment and a part of th

S0a
one, and that for

d.
b0

2n22b1~12b0!

~11b0
n21b1!~12b0

n!
, ~56!
2-9
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for which

f n21~ Ĩ L ;ãnR
!.2d ~57!

is satisfied, the wholeÕn subinterval~that is always found
on the right side ofÕ) lies on the horizontalS0b

segment.

Thus, after passing throughÕn , the orbit returns toR0 at Ĩ R
~Fig. 13 forn53) regardless of the point at which it entere
Õn . Thus every (10n) subperiod must be followed by
(10n21) one @otherwise, every (10n) subperiod must be fol-
lowed by another identical (10n) subperiod, which would
bring us back to the$10n% period#. Õn21, however, must
have at least a part on theS0a

segment. This allows succes

sive visits inÕn21, which are different from each other, an
for which the last visit returns toÕn . Thus, there is no limi-
tation on successive (10n21) subperiods. Hence, ford,d̃n
there can be~and it turns out that there is! a sequence o
$(10n)(10n21)m% (m51, . . . ,̀ ) plateaus in the gap betwee
$10n% and $10n21%. For values ofd satisfying Eq.~56!, this
sequence fills the whole of this gap. Only values ofd that are
very small~compared tod̃n) violate Eq.~56!. For these val-
ues other periods begin to appear in this gap.

Let us now investigate how the right part of the devi
staircase changes withd. In order to do so we again look a
the segmentsO and I on R1 for 1

2 ,a,1 ~the right side of
the staircase!. The expressions forOL50, OR5 f 1

21(0)
5(12a)/b1 andI R5 f (02)5a, which are given by Eqs.~8!
and ~17! for the two-segment map stay unchanged, and
all independent ofd. As we have seen above, the right end
each $1n0% plateau, anR

, is the value of a for which

FIG. 13. The segmentsÕ2 and Õ3 ~thickened! for a50.182

b050.8, b150.8, andd50.1. Note that hereÕ3 is mapped into
one point.
01620
re
f

f 1
n21(I R)5OR . SinceI R , OR , andf 1(x) are all independen

of d, so isanR
. However,I L5 f 2(01) does depend ond:

I L5 f 2~01!5 f ~a21!

5H f 0a
~a21! 5b0~a211d!1a, 2d>a21

f 0b
~a21! 5a5I R , 2d,a21.

~58!

The left end of the$1n110% plateau,a(n11)L
, is the value of

a for which f 1
n21(I L)5OR . Therefore

2d,anR
21⇒I L5I R⇒anR

5a(n11)L
, ~59!

that is, there is a jump from the$1n0% plateau directly to the
$1n110% one. By substituting the expression ofanR

from Eq.
~25! into Eq. ~59!, we obtain

dn5b1
n 12b1

12b1
n11

. ~60!

Thus ford.dn , there is no gap between the$1n0% and the
$1n110% plateaus. Ford,dn , there exist values ofa for
which the subintervalsOn andOn11 can be defined in theO
interval. Sincef (On) is on the right side off (O) ~Fig. 14!,
its image might lie entierly in the horizontal part of the ma
i.e.,

f ~On!,S0b
. ~61!

A necessary condition for this situation is

f 1
n~ I L ;anR

!.2d, ~62!

FIG. 14. The segments O35@OL , f 2(I R)) and O2

5@ f (I L),OR)) ~thickened! for a50.753, b050.8, b150.8, andd
50.1. O2 is mapped into one point after a visit inR0.
2-10
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which is satisfied for

d.
b0b1

2n~12b1!

~12b1
n11!~11b0b1

n!
. ~63!

For those values ofd, the subintervalOn maps to the point
I R , and later intof n(I R) that is inOn11. Thus ~in the gap!
every (1n0) subperiod must be followed by a (1n110) one,
and there can be no period containing two consecutive (1n0)
subperiods. On the other hand,f (On11) is on the left side of
f (O), therefore at least a part of it must lie inS0a

, and there

is no limit to consecutive (1n110) subperiods. Hence, fo
d,dn , there can be~and actually there exists! a sequence o
$(1n0)(1n110)m% (m51, . . . ,̀ ) plateaus in the gap be
tween the$1n0% and$1n110% plateaus. When in addition Eq
~63! is satisfied, this sequence fills the entire gap.

Figure 15 sums up the changes of the staircase withd, and
reveals a hierarchy of partiality. Ford.1 the staircase is
constant, and contains only the$1n0% plateaus. This range o
d values is the widest, which puts this staircase in the top
the partiality hierarchy. The first change occurs atd51,
where a gap is being opened between the$0% and the$10%
plateaus. This gap is filled with$(102)(10)n% plateaus. The
range ofd values here is also relatively large. A further d
crease ind add a $(103)(102)n% sequence of plateaus be
tween the$0% and the$102% plateaus, and a$(10)(120)n%
sequence between the$10% and the$120% ones. The order of
appearance of these two sequences depends on the rat
tweenb0 andb1. Equations~55! and ~60! show that forb0

5b1 , d̃35d1, and those sequences appears together. H
ever, for b0.b1, the $(103)(102)n% sequence appears firs
while for b1.b0 it is the $(10)(120)n% sequence that is th
first to emerge.

With a further decrease ofd, there appear the
$(10n)(10n21)m% and $(1n0)(1n110)m% sequences for
n.1, which have been discussed above. Other seque
not previously discussed appear as well. The first one

FIG. 15. The change of the staircase withd ~the length of the
horizontal segmentS0b

); b05b150.7.
01620
f

be-

w-

es
a

$(10)(10120)n% sequence that appears between the$10% and
the$10120% plateaus. It starts to appear whenf (O1) expands
into the S0a

segment~for values ofa corresponding to the

gap between the$10% and the$120% plateaus!. As d→0,
more and more periods are added until evidently a comp
devil’s staircase is achieved ford501.

Generally speaking, the more complicated the par
staircase is, the narrower is the range ofd values which
yields it.

V. DISCUSSION

Asymmetric partial devil’s staircases have appeared s
radically in the literature for more than a decade. In some
the cases they are explicitly identified, while for others t
partiality of the staircase is not mentioned. But there h
been no theoretical framework for partial devil’s staircas
like the one existing for the complete ones. There does
even exist a ‘‘standard’’ map, playing the role that the si
circle map fulfills for the complete staircase.

In this paper, for the first time~as far as we know!, such a
standard is suggested@Eq. ~51!#. The properties of the map
were linked to the shape of the ensuing staircase. It has b
shown that in this type~a map with a discontinuity!, the
long-term dynamics is determined only by the region arou
the discontinuity. Whenever this region is monotonically i
creasing~except at the discontinuity itself!, the ensuing stair-
case is a complete one; and a horizontal~or negatively
sloped! segment next to the discontinuity yields a part
staircase.

The link is not just qualitative, but semiquantitative. Th
essential feature of the map, which is responsible for
partiality of the staircase, is the ratio between the length
the horizontal~or almost horizontal! segment and the heigh
of the discontinuity jump. This ratio is well defined for th
piecewise linear map used here@d in Eq. ~51!#. The defini-
tion is of course less accurate for more realistic maps, bu
still important.

FIG. 16. The primary~full line!, secondary~long-dashed!, and
two tertiary ~short-dashed! branches of the Farey tree according
the order that is induced by the change ofd in Eq. ~51!.
2-11
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The use of this ratio induces a hierarchy in the emerg
branches of the Farey tree. It can be seen from Fig. 16
all the sequences of plateaus that appear in the devil’s s
case of Eq.~51! asd is decreased, correspond to branches
the Farey tree which incline to the right. The primary bran
is then/(n11) branch~for the $1n0% sequence of plateaus!.
It grows from the0

1 leaf and is ‘‘pulled’’ by the1
1 leaf. The

secondary branch is then/(2n11) ~for the $(10)n102% pla-

teaus!. It grows from the first leaf in the primary branch (0
1 )

and is pulled by the second leaf (1
2 ). There are two tertiary

branches. Then/(3n11) ~for the $(102)n103% plateaus! that
grows from the first leaf of the secondary branch, and
(2n11)/(3n12) ~for the $(120)n10% plateaus! that grows
from the second leaf of the primary branch. There are f
quarternary branches growing in a similar way, and so fo
For b05b1 in Eq. ~51!, both tertiary branches appear t
gether whend is reduced, followed by all the quaterna
branches, etc. But forb0.b1, the whole tree ‘‘leans’’ more
to the 0

1 side, i.e., the left branches in each level of t
hierarchy appear first. Left branches from a lower level m
sometimes appear even before right branches from an u
level in the hierarchy.

This hierarchy enables a successful ‘‘imitation’’ by th
piecewise linear map of staircases that appear both in ex
ments and in numerical calculations of ordinary different
equations. The simplest staircase, other than the trivial o
that contain only$1n0% ~or $10n% when the horizontal seg
ment is to the right of the discontinuity!, is of the type that

FIG. 17. Staircase with both$1n0% and$(120)(10)n% sequences
of plateaus for the three-segment map withd50.42. Other param-
eters are as in Fig. 15.
u
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was obtained by Takahashiet al. in Ref. @2#, where in addi-
tion to the$1n0% sequence of plateaus there also appea
$(10)n102% sequence. In order to imitate this staircase w
the map of Eq.~51!, a suitable value ofd can always be
chosen: max(d̃3,d1),d,d̃2 ~as can be seen in Fig. 17!. A
staircase, where in addition to these plateaus there app
also a $(102)n103% sequence like in Ref.@3#, can also be
obtained. As we can see from Eqs.~55! and~60! and Fig. 15,
in order to avoid the appearance of an additional$(120)n10%
sequence,b1 should be smaller thanb0, i.e., R0 ~in its non-
horizontal segment! should be steeper thanR1. In some pa-
pers@9,7,11# there exist partial staircases that contain ma
$(10n)(10n21)m% sequences, and relatively narro
$(10)(120)n% plateaus. This kind of staircase can b
achieved~Fig. 18! with b0@b1, which is needed in order to
obtain d̃n.d1 for a relatively high value ofn. This result is
consistent with maps obtained for excitable models@11,19#,
where the slope ofR0 is almost 1, except for a small segme
near the discontinuity whereR0 curls downwards, andR1
monotonically, but moderately, increases.

The piecewise linear map is obviously only a caricature
real maps, for whichR0 curls down near the discontinuity
but it does explain the partiality phenomenon quite well.
fails, however, to recapture finer details like ‘‘period do
bling’’ and chaos~the later, sinceud f /dxu,1). This is prob-
ably why we have not obtained any ‘‘noisy’’ nonmonoton
staircase, like those found in several papers@2,3,11,12#.
These are the subject matter for future publications.

FIG. 18. Staircase forb050.7, b150.2, andd50.05. Since

d2,d̃9,d,d̃8,d1, there is a$(108)(107)n% sequence on the lef
side of the staircase, whereas on the right side the only sequ
other than the$1n0% is a small$(120)m10% sequence.
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